Atlantic Multidecadal Oscillation (AMO) modulates North Atlantic atmospheric blocking

Atmospheric blocking over the high-latitude North Atlantic blocks the westerly jet stream, causing the eastward propagation of weather systems to stall for 7 days or so. An earlier study  by Häkkinen et al. (2011) used the 20th century atmospheric reanalysis product of NOAA (20CR) to show that the wintertime blocking frequency over high latitude North Atlantic covaries... Continue Reading →

Recent warming of the tropical Indian Ocean may sustain the AMOC from slowing down

A recent study published in Nature Climate Change used a series of coupled ocean-atmosphere model simulations to demonstrate that the tropical Indian Ocean (TIO) warming reduces rainfall over the tropical Atlantic by strengthening the Walker circulation (i.e., increased ascending motion over TIO and increased subsidence over tropical Atlantic). This increases salinity of the upper tropical Atlantic Ocean.... Continue Reading →

Recent recovery of the Antarctic Bottom Water and its contribution to the Global Meridional Overturning Circulation

The lower limb of the Global Meridional Overturning Circulation (GMOC) is supplied by  the sinking of the heavy water mass that forms around the Antarctica, known as the Antarctic Bottom Water (AABW).  Repeat hydrographic data along the Atlantic, Pacific and Indian Ocean sections observed during the mid 1990s, 2000s and 2010s indicate that the volume... Continue Reading →

North Atlantic Ocean gyre circulation dictates the interannual sea level variability along the U.S. Southeast and Gulf Coasts

Interannual and longer time-scale sea level changes are relatively small amplitude. However,  they can provide background conditions favorable for the occurrence of extreme sea levels that represent a threat for coastal communities, especially in low-lying and flood-vulnerable regions. A new study accepted in Geophysical Research Letters identified the dominant mode of the ocean gyre-scale sea surface height... Continue Reading →

Enhanced carbon sequestration by the North Atlantic Ocean during the Last Glacial Maximum

According to Redfield stoichiometry, marine organisms incorporate and release PO4 and Dissolved Inorganic Carbon (DIC) in a relatively fixed proportion. Additionally, PO4 in the ocean is not affected by air-sea exchange. Therefore, PO4 and DIC in the ocean can be used to estimate biology-driven versus air-sea flux-driven oceanic DIC redistributions. Applying this method to sediment core data, a new paper... Continue Reading →

Cold versus warm water routes for the upper limb of the South Atlantic MOC

The surface water in the South Atlantic (σ2 < 35.7) is known to originate largely from the Indian Ocean via the Agulhas leakage (e.g., Beal et al., 2011; Gordon, 1986). It is carried northward below the surface mixed layer and brought to the surface via the equatorial Atlantic upwelling. Antarctic Intermediate Water (AAIW) that forms... Continue Reading →

Recent intensification of Amazonian flooding extremes is linked to the tropical Atlantic warming and tropical Pacific cooling

The Amazonian River basin hosts the one of the major global deep tropical convective systems, and thus drives the global Hadley and Walker circulations and the global hydrological cycle. Changes in the water cycle and deep convection activity in this region are, however, largely affected by remote oceans, especially the tropical Pacific, via the Walker circulation.... Continue Reading →

Deep Indo-Pacific Oceans are still in the Little Ice Age

The Little Ice Age (LIA) is a period of cold global average surface temperatures from around 1600 to 1850, following the Medieval Warm Period (950 ~ 1250). A new study published in Science suggested that since the ocean adjusts to the surface thermal anomalies with the time scales of 100 ~ 1,000 years, some parts of the... Continue Reading →

Glacial weakening of the AMOC and the associated increase in deep ocean carbon deposit

During the mid-Pleistocene between 1,250 and 700 kyr ago (ka), Earth’s climate oscillated between warmer interglacial periods and cooler glacial periods with reduced and expanded polar ice sheets, respectively. Paleo records indicate that the Atlantic meridional overturning circulation (AMOC)  was relatively weaker during glacial periods likely due to reduced evaporation and increased freshwater input from glaciers to the... Continue Reading →

Powered by WordPress.com.

Up ↑